http://www.cbseguess.com/

Sample Paper - 2014
 Class - XII
 Subject - MATHEMATICS

1. All questions are compulsory. The question paper consists of 29 questions divided in to 3 sections A, B and C Section A consists of 10 questions of 1 mark, section B of 12 questions of 4 marks each and section C consists of 7 questions of 6 marks each.
2. There is no overall choice, internal choice has to be provided in some questions. you have to attempt, only one of the alternatives in all such questions.

Section A

1. Using the principal values find value of
2. If $\left[\begin{array}{cc}2 x+1 & 2 y \\ 0 & y^{2}+1\end{array}\right]=\left[\begin{array}{cc}x+3 & 8 \\ 0 & 17\end{array}\right]$, write the value of $(x-y)$.
3. Find the value of A^{2}, if $A=\left[\begin{array}{ll}3 & 8 \\ 2 & -1\end{array}\right]$,
4. Examine the continuity of the function $f(x)=10 x+x^{3}-x^{2}$ at $x=0$
5. If $M=\left|\begin{array}{ccc}2 & \mathbf{3} & -2 \\ -2 & \mathbf{1} & \mathbf{4} \\ x & 0 & 7\end{array}\right|$ is a singular matrix, find .
6. Write the principal value of

$$
\cos ^{-1} \mathbb{Z}(\cos \mathbb{7 \pi} 3)
$$

7. Write the degree and order of the differential equation : $\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}+4 y=9$.
8. Write the value of $\int_{0}^{1} \frac{2 x}{1+x^{2}} d x$.
9. If the determinant of the matrix A of order 3*3 is of value 4, write the value of $|3 A|$.
10. If $x=\sin \theta, y=-\tan ^{\theta}$, find $\frac{d y}{d x}$.

Section B
11. Prove that $\tan ^{-1} \frac{3}{4}+\llbracket \tan ^{-1}\left(\mathbb{\square} \frac{3}{5}\right)-\llbracket \tan ^{-1}\left(\square \frac{8}{19}\right)=\frac{\pi^{4}}{4}$.

cbse Figuess

http://www.cbseguess.com/

12. Find the value of k, such that the function ' f ' defined by

$$
f(x)=\left\{\begin{array}{cc}
\frac{k \cos x}{\pi-2 x}, & x<\frac{\pi}{2} \\
3, & x \geq \frac{\pi}{2}
\end{array}\right.
$$

(or)

$$
\text { If the function } f(x) \text { is given by }
$$

$$
f(x)=\left\{\begin{array}{cc}
3 a x+b, & \text { if } x>1 \\
11, & x=1 \\
5 a x-2 b, & \text { if } x<1
\end{array}\right.
$$

$$
\left|\begin{array}{lll}
b+c & a-b & a \\
c+a & b-c & b \\
a+b & c-a & c
\end{array}\right|
$$

13. Using properties of determinants, prove the following: $\left|\begin{array}{ll}c+a & b-b \\ a-c\end{array}\right|$ $a^{3}-b^{3}-c^{3}$
14. solve the following differential equation: -

$$
\frac{d y}{d x}+\sec x \cdot y
$$

15. solve the differential equation: $x \quad \frac{d y}{d x}=\sqrt{x^{2}+y^{2}}+y$.
16. If $y=\sqrt{\log } \sqrt{\frac{1-\cos x}{1+\cos x}}$
17. Find the value of $\sqrt{25.2}$, using differentials.

Radius of a variable circle is changing at the rate of $0.2 \mathrm{~cm} / \mathrm{s}$. Find the rate of change in its Area if its radius is 10 cm .
18. Find the volume of the largest cylinder that can be inscribed in a sphere of radius $r \mathrm{~cm}$.(or) Verify Lagrange's mean value theorem for the function defined by $f(x)=\sqrt{x^{2}-4}$ in the interval $[2,4]$
19. evaluate $\int \frac{2 x+5}{\sqrt{7-6 x-x^{2}}} d x$.
20. if $y=\square \square \tan \square^{\top}(-1)(\square \square \cos x / \square \mathbf{1}-\sin \square x \square)$, find $\frac{d y}{d x}$.
21. find the area of the region enclosed between two curves $y^{2}=4 a x$ and $x^{2}=4 a y$.
22. Express the following in simplest form : $\square \square \tan \square^{\top}(-1)(\square \square \cos x / \square \mathbf{1}-\sin \square x \square)$. Section C
23. If $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3\end{array}\right]$, find A^{-1} and use it to solve the system of equations:
$x+y+2 z=0 ; x+2 y-z=9 ; x-3 y+3 z=-14$
24. Using properties of determinants prove the following:

cbse Figuess

http://www.cbseguess.com/

25. find the area of the region between the two curves $x^{2}+y^{2}=4$ and $(x-2)^{2}+y^{2}=4$.
26. Prove that the volume of greatest cylinder that can be inscribed in cone of height h and semi vertical angle 30° is $\frac{\mathbf{4}}{81} \boldsymbol{\pi} \boldsymbol{h}^{\boldsymbol{a}}$.
27. Solve : $\int \frac{x^{4}}{(x+1)\left(x^{2}+1\right)} d x$.
28. evaluate : $\int_{0}^{\pi} \frac{x}{1+\sin x} d x$.
29. If $\sqrt{1-x^{2}}+\sqrt{1-y^{2}}=a(x-y)$, prove that $\frac{d y}{d x}=\sqrt{\frac{1-y^{2}}{1-x^{2}}}$. (or) if $y=\mathbb{I}\left(\tan \rrbracket^{-1} x\right)^{2}$ Then prove that : $\left(1+x^{2}\right)^{2} \frac{d}{d x^{2}}+\frac{d}{d x} \quad 2 x\left(1+x^{2}\right)=2$

Paper Submitted By:

Name
Email
Phone No.

BHANU SHANKAR BAJPAYEE

